Abstract

Floods are frequent natural disasters and could have serious impacts on aquatic environments. Eukaryotic communities in artificial canals influenced by floods remain largely unexplored. This study investigated the spatiotemporal variabilities among eukaryotes in response to floods in the Grand Canal, China. Generally, 781,078 sequence reads were obtained from 18S rRNA gene sequencing, with 304,721 and 476,357 sequence reads detected before and after flooding, respectively. Sediment samples collected after the floods exhibited a higher degree of richness and biodiversity but lower evenness than those before the floods. The eukaryotic communities changed from Fungi-dominated before floods to Stramenopile-dominated after floods. The spatial turnover of various species was the main contributor to the longitudinal construction of eukaryotes both before the floods (βSIM = 0.7054) and after the floods (βSIM = 0.6858). Some eukaryotic groups responded strongly to floods and might pose unpredictable risks to human health and environmental health. For example, Pezizomycetes, Catenulida, Glomeromycetes, Ellipura, etc. disappeared after the floods. Conversely, Lepocinclis, Synurale, Hibberdiales, Acineta, Diptera, and Rhinosporidium were all frequently detected after the floods, but not prior to the floods. Functional analyses revealed amino acid metabolism, carbohydrate metabolism, translation, and energy metabolism as the main metabolic pathways, predicting great potential for these processes in the Grand Canal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.