Abstract

AbstractIt has been reported in some cases that an increase in pCO2 stimulates growth in diluted cell suspension cultures. Experiments have been designed to study the pattern of dark CO2 fixation in sycamore cells grown in liquid suspension and to correlate this pattern with the culture growth phases. Comparisons were made between enzymatic activities, CO2 incorporation, malic acid content during lag, logarithmic and stationary phases of growth. Malic enzyme (NADP‐dependent) was at its maximum activity during early logarithmic growth phase, when biosynthetic capacities were at the highest. Phosphoenolpyruvate‐carboxylase activity was strongly correlated with the ability of cells to fix CO2. Malic acid content decreased soon after transfer of the cells to a new medium and increased at the onset of stationary phase. Under optimal conditions, the CO2 incorporation pattern did not change during growth, with an almost identical incorporation in the basic (amino acids) and acidic (organic acids) fractions. These observations have been discussed in relation to a possible effect of increased pCO2 in the cell environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call