Abstract

The rates of dark CO(2) fixation and the label distribution in malate following dark (14)CO(2) fixation in a C-4 plant (maize), a C-3 plant (sunflower), and two Crassulacean acid metabolism plants (Bryophyllum calycinum and Kalanchoë diagremontianum leaves and plantlets) are compared. Within the first 30 minutes of dark (14)CO(2) fixation, leaves of maize, B. calycinum, and sunflower, and K. diagremontianum plantlets fix CO(2) at rates of 1.4, 3.4, 0.23, and 1.0 mumoles of CO(2)/mg of chlorophyll. hour, respectively. Net CO(2) fixation stops within 3 hours in maize and sunflower, but Crassulaceans continue fixing CO(2) for the duration of the 23-hour experiment.A bacterial procedure using Lactobacillus plantarum ATCC No. 8014 and one using malic enzyme to remove the beta-carboxyl (C(4)) from malate are compared. It is reported that highly purified malic enzyme and the bacterial method provide equivalent results. Less purified malic enzyme may overestimate the label in C(4) as much as 15 to 20%.The contribution of carbon atom 1 of malate is between 18 and 21% of the total carboxyl label after 1 minute of dark CO(2) fixation. Isotopic labeling in the two carboxyls approached unity with time. The rate of increase is greatest in sunflower leaves and Kalanchoë plantlets. In addition, Kalanchoë leaves fix (14)CO(2) more rapidly than Kalanchoë plantlets and the equilibration of the malate carboxyls occurs more slowly. The rates of fixation and the randomization are tissue-specific. The rate of fixation does not correlate with the rate of randomization of isotope in the malate carboxyls.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call