Abstract

The effect of a treatment course with a Regent multimodal complex exoskeleton (MCE) on the reorganization of cortical locomotor zones was studied in 14 patients with post-stroke hemiparesis, mainly in the chronic stage of the disease. Specific activation zones were identified prior to treatment in the primary sensorimotor and supplementary motor areas and the inferior parietal lobules of both affected and healthy hemispheres by functional magnetic resonance imaging (fMRI) used in a special passive sensorimotor paradigm. After a treatment course with the MCE, temporal characteristics of walking were found to improve, which was accompanied by a decrease in the activation zones of the inferior parietal lobules, especially in the healthy hemisphere, and a significant increase in the activation zones of the primary sensorimotor and supplementary motor areas. Significant changes in intrahemispheric and interhemispheric interactions were revealed by analyzing the functional connectivity of the zones under study before and after a course of treatment with the MCE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call