Abstract

The changes in the free amino acid (FAA) levels, the rate of efflux of FAAs from the perfused liver, and the activity of some enzymes related to amino acid metabolism such as glutamate dehydrogenase (GDH, both reductive amination and oxidative deamination), glutamine synthetase (GS), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were studied in the liver of a freshwater air-breathing teleost, the walking catfish, Clarias batrachus, perfused with 5 and 10 mM NH(4)Cl. The level of the various non-essential FAAs increased significantly, with a total increase of about 150%, which was accompanied by a significant increase of both ammonia and urea-N in the perfused liver both with 5 and 10 mM NH(4)Cl. The rate of efflux of these non-essential FAAs from the perfused liver also increased significantly with a total increase of about 115% and 160% at 5 and 10 mM NH(4)Cl, respectively. The activity of the mentioned amino acid metabolism-related enzymes in the perfused liver also got stimulated, except for GDH in the ammonia forming direction and ALT, under a higher ammonia load. The activity (both tissue and specific) of GDH in the glutamate forming direction increased maximally, followed by AST and GS in a decreasing order. Owing to these physiological adaptive strategies related to amino acid metabolism along with the presence of a functional and regulatory urea cycle (reported earlier), it is believed that this catfish is able to survive in very high ambient ammonia or in the air or in the mud during habitat drying.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.