Abstract

Typical antipsychotic drugs with a high extrapyramidal motor side-effects liability markedly increase extracellular dopamine in the caudate-putamen, while atypical antipsychotic drugs with a low incidence of extrapyramidal motor side-effects have less pronounced stimulating actions on striatal dopamine. Therefore, it has been suggested that the extrapyramidal motor side-effects liability of antipsychotic drugs (APD) is correlated with their ability to increase extracellular dopamine in the caudate-putamen. The globus pallidus (GP) is another basal ganglia structure probably mediating extrapyramidal motor side-effects of typical antipsychotic drugs. Therefore, the present study sought to determine whether extracellular dopamine in the globus pallidus might be a further indicator to differentiate neurochemical actions of typical and atypical antipsychotic drugs. Using in vivo microdialysis we compared effects on pallidal dopamine induced by typical and atypical antipsychotic drugs in rats. Experiment I demonstrated that systemic administration of haloperidol (1 mg/kg; i.p.) and clozapine (20 mg/kg; i.p.) induced a significant pallidal dopamine release to about 160 and 180% of baseline, respectively. Experiment II revealed that reverse microdialysis of raclopride and clozapine using a cumulative dosing regimen did not stimulate extracellular dopamine in the globus pallidus if low (1 μM) or intermediate (10 and 100 μM) concentrations were used. Only at a high concentration (1000 μM), raclopride and clozapine induced a significant pallidal dopamine release to about 130 and 300% of baseline values, respectively. Thus, effects of typical and atypical antipsychotic drugs on pallidal dopamine were similar and thus, may not be related to their differential extrapyramidal motor side-effects liability. Furthermore, the finding that reverse microdialysis of raclopride over a wide range of concentrations did not stimulate pallidal dopamine concentrations tentatively suggests that pallidal dopamine release under basal conditions is not regulated by D2 autoreceptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call