Abstract
The chorion of unfertilized medaka Oryzias latipes eggs consists of two major proteins (77-73 and 49 kDa) and a minor 150 kDa protein. Upon fertilization, these major chorion proteins are polymerized to insoluble high molecular weight proteins via the temporary formation of several new proteins (132, 114, 62 and 61 kDa). Increasing chorion toughness is closely related to the formation of high molecular weight proteins and the increasing insolubility of the chorion proteins. The changes in chorion proteins and hardening could be induced in vitro in isolated chorions by an egg exudate, which includes cortical alveolar contents. The effects of temperature and pH on the egg exudate-induced changes in chorion proteins were examined in the present study. The major proteins could be digested by proteolytic enzymes. The 49 kDa protein was PAS-positive. Analysis with polyclonal antibodies against the major proteins demonstrated that the temporarily formed 62 and 61 kDa proteins were derived from the 77-73 kDa protein and that higher molecular weight proteins, newly formed in the process of chorion hardening, contained the same epitopes as did the 77-73 and 49 kDa proteins. The results suggest that the changes in chorion proteins of the medaka egg at the time of fertilization can be induced by an enzyme(s) released from the egg cortex into the perivitelline space.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have