Abstract
The outer parenchyma of carrot was tested using dynamic mechanical analysis (DMA), in air with 90% humidity between 30 and 90°C. Temperature plots of storage (SM i.e. elastic) and loss (LM i.e. inelastic) moduli were obtained. The SM and LM values were the basis for the calculation of the loss tangent (LT), the parameter expressing the ratio of inelastic to elastic parenchyma toughness. As expected, the tissue toughness decreased with increasing temperature. For both moduli, two characteristic temperature areas with temperature slope minima were observed--they were termed low (I) and high (II) temperature negative peaks on the temperature slope plots. It was shown that the negative peaks were related to an increase in the inelastic part of the tissue toughness. All plots were dependent on the temperature rate: increasing the temperature rate (from 0.5 to 2°C/min) resulted in a shift of both the negative peaks I and II to higher temperatures, thereby reducing I and increasing II. It was shown that the observed behaviour cannot be described by simple kinetic equations due to the time dependent and complicated character of the thermally induced changes. These changes were interpreted as a consequence of pore protein denaturation followed by changes of the stress inside the parenchyma cells.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have