Abstract

Gradual environmental changes are determining factors in the disposition of plants and associated organisms, such as arbuscular mycorrhizal fungi (AMF). The objective of this study was to evaluate the AMF species communities in a tropical semi-arid region of NE Brazil under decreasing clay content at a mountain top area forming a vegetative mosaic of dry forests, savanna-like shrubland and humid montane forests. Through field and trap culture samples, 80 species of AMF were identified belonging to 25 genera, of which Acaulospora and Glomus were the most representative. In general, representatives of the order Gigasporales were indicators of sites with lower clay content and showed greater abundance in these sites. As expected, less richness was found in the site with higher clay content, but there was no variation in the Shannon-Weaver index in the gradient studied. The areas showed different assemblies of AMF among the sites with higher and lower clay content, and the main factors structuring the species were carbon, clay and potential acidity. In addition, field samples and trap cultures showed different assemblies; through the use of cultures it was possible to detect additional species. Soil properties have been found to be determinants for the distribution of these microorganisms and further studies in different vegetation types can help to understand the ecological preferences of AMF species.

Highlights

  • Arbuscular mycorrhizal fungi (AMF) are present in the soil in the form of spores and extraradicular hyphae, as well as in the roots of plants with which they form a mutualistic association

  • A higher percentage of sand was found in low clay content (LCC), and the silt content was higher in medium clay content (MCC) and LCC

  • A similar result was observed for humidity, which was higher in LCC and MCC (12.9% and 11.7%, respectively) than in high clay content (HCC) (7.2%)

Read more

Summary

Introduction

Arbuscular mycorrhizal fungi (AMF) are present in the soil in the form of spores and extraradicular hyphae, as well as in the roots of plants with which they form a mutualistic association. AMF receive carbohydrates and lipids necessary for their survival through the plants, in exchange they increase the availability of water and nutrients for the host [1,2]. Fungi obtain these resources for plants with greater efficiency, leading to an increase in plant productivity [3]. AMF are important for soil because they promote the formation of aggregates through the action of extraradicular mycelia [4], and are able to improve soil structure by stabilizing the particles into larger and more stable structures [5].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call