Abstract
IntroductionX-linked hypophosphatemic (XLH) rickets causes significant bone deformities in the lower limbs resulting from a bone mineralization defect. According to Frost's Mechanostat theory, compensatory modeling of the bones takes place during increased mechanical loads. In addition, mechanical stimuli modulate the differentiation of mesenchymal stem cells; common precursors to bone marrow adipocytes and osteoblasts. HypothesisBone deformities of the lower limbs lead to increased femoral bone mass and decreased fatty infiltration of the bone marrow (FIBM) in children with XLH rickets compared to a control group. Patients and methodsEleven children (10.3years [6–17]) with XLH rickets and 22 healthy children (10.2years [5–15.5]) underwent lower limb Magnetic Resonance Imaging. A calculation of FIBM was performed at the mid-femur, as well as a calculation of the total bone cross-sectional area (CSA), the cortical CSA, the anteroposterior and mediolateral axes of the femur, bone marrow and the thickness of the femoral cortices. ResultsTotal bone CSA, total cortical CSA and bone marrow CSA were higher in the XLH group than in the control group (p<0.05). The mid-lateral diameters of the femur and bone marrow were more elongated than those of the control group (p<0.001). Only the anterior cortex was thinned in the XLH group (p=0.001), while there was no difference with the control group for the posterior, medial and lateral cortices. The total percentage of FIBM was 72.81% [±3.95] and 77.4% [±5.52] for the XLH and control groups respectively (p<0.001). DiscussionThe increase in bone mass in the XLH population reflects an adaptation of bone tissue to the bone deformities present in this pathology. The decrease in FIBM indicates a lower risk of osteoporosis in the XLH population and may constitute a new monitoring parameter in this pathology. Level of studyIII; Case-control study.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have