Abstract

The global climate is undergoing extraordinary changes, profoundly influencing a variety of ecological processes. Understanding the distribution patterns and predicting the future of plant diversity is crucial for biodiversity conservation in the context of climate change. However, current studies on predictive geographic patterns of plant diversity often fail to separate the effects of global climate change from other influencing factors. In this study, we developed a spatial simulation model of spermatophyte family diversity (SSMSFD) based on data collected from 200 nature reserves covering approximately 1,500,000 km2, where direct anthropogenic disturbances to plant diversity and the surrounding environment are absent. We predicted the spermatophyte family diversity for all provinces in China in 2020, 2040, and 2080, considering the impacts of global climate change. On average, China currently exhibits 118 plant families per 25 km2, with a decreasing trend from southeast to northwest. When considering only the effects of global climate change, excluding direct anthropogenic disturbances, our results indicate that under the Shared Socioeconomic Path Scenarios (SSPs) 245 and 585, spermatophyte family diversity is projected to slowly increase in most Chinese provinces from 2021 to 2080. Notably, the increase is more pronounced under SSPs585 compared to SSPs245. Global climate change has a positive effect on plant diversity, in contrast to the negative impact of anthropogenic disturbances that often lead to declines in plant diversity. This research highlights the contrasting outcomes of future plant diversity under the sole influence of global climate change and the significant negative effects of anthropogenic disturbances on diversity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.