Abstract

Nanoparticles (NPs) can form protein coronas with plasma proteins after entering the biological environment due to their surface adsorption ability. In this study, the effects of protein coronas of roast squid food-borne nanoparticles (FNPs) with human serum albumin (HSA) on the HepG-2 and normal rat kidney (NRK) cells were investigated. The hydrodynamic diameters of the HSA and HSA-FNPs were 8 and 13 nm, respectively. The cytotoxicity and cell membrane damage of FNPs to HepG-2 cells increased with the increase of roasting temperature. The presence of 4.78 × 10-3 mol/L FNPs increased the numbers of cellular necrosis and prolonged the G2 phase of the cell cycle. The formation of protein coronas of squid FNPs mitigated the autophagy phenomenon by FNPs on HepG-2 cells. Moreover, protein coronas reduced the mitochondrial membrane potential in the HepG-2 and NRK cells and the production of reactive oxygen species caused by FNPs. The abnormal contents of oxidative stress indicators such as glutathione, superoxide dismutase, malondialdehyde, and catalase in HepG-2 and NRK cells induced by FNPs were alleviated due to the presence of HSA. These results suggested that the protein coronas formed by HSA on FNPs mitigated the cytotoxicity compared with the bare FNPs, thus providing insights into the interaction of squid FNPs with HSA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call