Abstract
Normal rat kidney (NRK) cells infected with a temperature-sensitive (ts) mutant of mouse sarcoma virus (NRK [MSV-1b]) express the transformed phenotype when grown under permissive conditions, but acquire the normal phenotype when grown under restrictive conditions. Addition of 3', 5' cyclic adenosine monophosphate (cAMP) to NRK (MSV-1b) cells grown at the restrictive temperature results in morphological transformation. To determine whether other markers associated with the transformed phenotype were coordinately expressed after cAMP exposure, concanavalin A (Con A) agglutinability, hexose transport rate, and incorporation of radioactively labeled fucose into fucolipid III and fucolipid IV (FL III and FL IV ) of the cells were examined. NRK cells transformed by wild-type MSV or NRK(MSV- 1b) grown under permissive conditions were agglutinated by low concentrations of Con A and exhibited relatively high maximal agglutination levels which were specifically inhibited by alpha-methyl-D-mannoside. In contrast, NRK (MSV-1b) cells grown under restrictive conditions were weakly agglutinated by Con A and exhibited reduced maximal agglutination levels, similar to uninfected NRK cells. Treatment of NRK (MSV-1b) cells at the restrictive temperature with cAMP resulted in morphological transformation and a change in the pattern of incorporation of labeled fucose inot FL III and FL IV to one comparable to that of NRK (MSV-1b) cells at the permissive temperature or to NRK cells transformed by wild-type MSV. In contrast, cAMP treatment resulted in no increase in Con A agglutinability or 2 deoxy-D- [(3)H]glucose transport relative to mock treated cultures. The results demonstrate that cAMP-induced morphological transformation and altered fucolipid composition of NRK (MSV-1b) cells are not correlated with alterations in hexose transport rate or Con A agglutinability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.