Abstract

Recognition and discrimination of small molecules are crucial for biological processes in living systems. Understanding the mechanisms that underlie binding specificity is of particular interest to synthetic biology, e.g. the engineering of biosensors with de novo ligand affinities. Promising scaffolds for such biosensors are the periplasmic binding proteins (PBPs) due to their ligand-mediated structural change that can be translated into a physically measurable signal. In this study we focused on the two homologous polyamine binding proteins PotF and PotD. Despite their structural similarity, PotF and PotD have different binding specificities for the polyamines putrescine and spermidine. To elucidate how specificity is determined, we grafted the binding site of PotD onto PotF. The introduction of 7 mutations in the first shell of the binding pocket leads to a swap in the binding profile as confirmed by isothermal titration calorimetry. Furthermore, the 1.7Å crystal structure of the new variant complexed with spermidine reveals the interactions of the specificity determining residues including a defined water network. Altogether our study shows that specificity is encoded in the first shell residues of the PotF binding pocket and that transplantation of these residues allows the swap of the binding specificity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.