Abstract

The development of novel, intrinsic two-dimensional (2D) antiferromagnets presents the opportunity to vastly improve the efficiency of spintronic devices and sensors. The strong intrinsic antiferromagnetism and van der Waals layered structure exhibited by the bulk transition-metal oxychlorides provide a convenient system for the synthesis of such materials. In this work, we report the exfoliation of bulk FeOCl into and subsequent characterization of intrinsically antiferromagnetic thin-layer FeOCl nanosheets. The magnetic properties of bulk FeOCl, its lithium intercalate, and its nanosheet pellet are measured to determine the evolution of magnetic properties from the three-dimensional to the quasi-two-dimensional system. This work establishes FeOCl and isostructural compounds as a source for the development of two-dimensional intrinsic antiferromagnets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.