Abstract
Adhesion is a molecular event where polymer chains contact with a material surface to form an interfacial layer. To obtain a better understanding of the adhesion on a molecular scale, we herein examined the conformational change of polystyrene (PS) chains at the film surface after contacting with hydrophobic or hydrophilic surfaces using sum-frequency generation (SFG) spectroscopy. Chains altered their local conformations with a quartz surface more quickly than a hydrophobic alkyl-functionalized one. A full-atomistic molecular dynamics simulation showed that these results, which were coupled with the contact process of PS chains with the solid surface, could be explained in terms of the Coulomb interaction between them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.