Abstract
We previously succeeded in enhancing wood formation of wood in transgenic poplar plants by overexpressing secondary wall NAM/ATAF/CUC (NAC) domain protein 1 from Oryza sativa (OsSWN1), a transcription factor 'master regulator' of secondary cell wall formation in rice, under control of the fiber preferential NST3/SND1 promoter from Arabidopsis. Transgenic plants had an increased cell wall thickness and cell wall density of individual cells in the secondary xylem of stems as well as an increased wood density. OsSWN1 triggers the induction of polysaccharide and lignin biosynthetic gene expressions, however, resulting in no significant impact on the lignin content in the transgenic plants. In contrast, wet and dry chemical analyses of lignin revealed changes in S/G ratio and in the composition of lignin interunit linkages in transgenic lines. The results from gene expression analysis suggest that the structural changes in lignin were due to an unbalanced induction of lignin biosynthetic genes in transgenic lines. Our present data indicate that the overexpression of the chimeric transcription factor causes accelerated deposition of secondary cell wall components including lignin and polysaccharides through an acquired mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.