Abstract

BackgroundMultiple sclerosis (MS) is a debilitating, neurodegenerative disorder causing considerable gait and balance dysfunction. Reactive balance (i.e., quick movements in response to a loss of balance) is particularly important for fall risk and is impaired in people with MS compared to neurotypical peers. Therefore, improving reactive balance among those with MS is critical. However, for maximum ecological validity, improvements in reactive balance through training would be demonstrable upon first loss-of-balance, rather than an average of several trials as is typically reported. This study evaluated changes in performance on the first stepping trial in people with MS after one day of practice. MethodsFourteen people with MS underwent two, consecutive days of support-surface perturbations from stance. On day 1, participants underwent a single backward-stepping trial, followed by 35 practice trails (forward and backward). Approximately 24 h later, participants were again exposed to a single backward stepping perturbation. Protective stepping outcomes were step length, step latency, and margin of stability at first foot contact. The backward step performance on the first trial of days one and two were compared, and difference scores were evaluated for relationships with correlates based on theoretical considerations. FindingsFirst-trial margin of stability increased (improved) from day 1 to day 2 (P = .016). Steps were also faster on average by approximately 5 ms on day 2, although this improvement was not significant (P = .062). InterpretationsAlthough preliminary, these findings provide evidence that individuals with MS may be able to experience first-trial improvements after a low dose of perturbation training.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.