Abstract

Mars is host to a variety of active surface processes that relate to changes in seasonal ice/frost, slope activity, wind and processes potentially relating to liquid water. Regular monitoring and change detection of these phenomena is crucial to not only provide us insights into present day Martian surface conditions, but also its past geologic and climatic scenarios. Visual comparisons of high-resolution remote sensing images of the surface from the Mars Reconnaissance Orbiter (MRO) have allowed detailed tracking and monitoring of these changes over time. The CaSSIS instrument onboard the ExoMars Trace Gas orbiter also provides a unique pathway to track areally-large surface changes in colour, that permits us to better constrain origin and evolution of various surface features. Since TGO operates in a non-sun-synchronous orbit, previously adopted qualitative methods like visual image comparisons for MRO cannot be adopted for CaSSIS-based change detection. Consequently, this study lists and describes in detail, the techniques that need to be adopted to conduct such change detection campaigns with CaSSIS, for the variety of active processes currently identified on Mars. This work also proposes and describes two additional semi-quantitative techniques for CaSSIS-based change detection, that may be used in concert with existing visual comparison methods to enable reliable change identification and tracking. It is observed that these supplementary methods work well in characterizing a variety of surface changes related to ice/frost and slope processes, and can provide reasonable spectral constraints to better understand their origin. These methods are not effective in providing quantitative constraints for purely physical changes. Instead, for long-period changes like aeolian bedform movement, digital image correlation techniques on ortho-rectified images, are recommended; while for short period changes like real-time dust devil activity, measurements based on CaSSIS stereo pairs of the region can be used to provide quantitative estimates of change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call