Abstract

The motion of a point like object of mass M passing through the background potential of massive collisionless particles (m ≪ M) suffers a steady deceleration named dynamical friction. In his classical work, Chandrasekhar assumed a Maxwellian velocity distribution in the halo and neglected the self gravity of the wake induced by the gravitational focusing of the mass M. In this paper, by relaxing the validity of the Maxwellian distribution due to the presence of long range forces, we derive an analytical formula for the dynamical friction in the context of the q-nonextensive kinetic theory. In the extensive limiting case (q = 1), the classical Gaussian Chandrasekhar result is recovered. As an application, the dynamical friction timescale for Globular Clusters spiraling to the galactic center is explicitly obtained. Our results suggest that the problem concerning the large timescale as derived by numerical N-body simulations or semi-analytical models can be understood as a departure from the standard extensive Maxwellian regime as measured by the Tsallis nonextensive q-parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.