Abstract
The main objective of this work is to put forward chance constrained mixed-integer nonlinear stochastic and fuzzy programming models for refinery short-term crude oil scheduling problem under demands uncertainty of distillation units. The scheduling problem studied has characteristics of discrete events and continuous events coexistence, multistage, multiproduct, nonlinear, uncertainty and large scale. At first, the two models are transformed into their equivalent stochastic and fuzzy mixed-integer linear programming (MILP) models by using the method of Quesada and Grossmann [I. Quesada, I E. Grossmann, Global optimization of bilinear process networks with multicomponent flows, Comput. Chem. Eng. 19 (12) (1995) 1219–1242], respectively. After that, the stochastic equivalent model is converted into its deterministic MILP model through probabilistic theory. The fuzzy equivalent model is transformed into its crisp MILP model relies on the fuzzy theory presented by Liu and Iwamura [B.D. Liu, K. Iwamura, Chance constrained programming with fuzzy parameters, Fuzzy Sets Syst. 94 (2) (1998) 227–237] for the first time in this area. Finally, the two crisp MILP models are solved in LINGO 8.0 based on scheduling time discretization. A case study which has 267 continuous variables, 68 binary variables and 320 constraints is effectively solved with the solution approaches proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.