Abstract
The purpose of this work is to introduce a notion of affine stacks, which is a homotopy version of the notion of affine schemes, and to give several applications in the context of algebraic topology and algebraic geometry. As a first application we show how affine stacks can be used in order to give a new point of view (and new proofs) on rational and p-adic homotopy theory. This gives a first solution to A. Grothendieck’s schematization problem described in [18]. We also use affine stacks in order to introduce a notion of schematic homotopy types. We show that schematic homotopy types give a second solution to the schematization problem, which also allows us to go beyond rational and p-adic homotopy theory for spaces with arbitrary fundamental groups. The notion of schematic homotopy types is also used in order to construct various homotopy types of algebraic varieties corresponding to various co-homology theories (Betti, de Rham, l-adic, ...), extending the well known constructions of the various fundamental groups. Finally, just as algebraic stacks are obtained by gluing affine schemes we define $$ \infty $$-geometric stacks as a certain gluing of affine stacks. Examples of $$ \infty $$-geometric stacks in the context of algebraic topology (moduli spaces of dga structures up to quasi-isomorphisms) and Hodge theory (non-abelian periods) are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.