Abstract

The sleeping sickness focus of Campo lies along the Atlantic coast and extends along the Ntem River, which constitutes the Cameroonian and Equatorial Guinean border. It is a hypo-endemic focus with the disease prevalence varying from 0.3 to 0.86% during the last few decades. Investigations on animal reservoirs revealed a prevalence of Trypanosoma brucei gambiense of 0.6% in wild animals and 4.83% in domestic animals of this focus. From 2001 to 2012, about 19 931 tsetse were collected in this focus and five tsetse species including Glossina palpalis palpalis, G. pallicera, G. nigrofusca, G. tabaniformis and G. caliginea were identified. The analysis of blood meals of these flies showed that they feed on human, pig, goat, sheep, and wild animals such as antelope, duiker, wild pig, turtle and snake. The percentage of blood meals taken on these hosts varies according to sampling periods. For instance, 6.8% of blood meals from pig were reported in 2004 and 22% in 2008. This variation is subjected to considerable evolutions because the Campo HAT focus is submitted to socio-economic mutations including the reopening of a new wood company, the construction of autonomous port at "Kribi" as well as the dam at "Memve ele". These activities will bring more that 3000 inhabitants around Campo and induce the deforestation for the implementation of farmlands as well as breeding of domestic animals. Such mutations have impacts on the transmission and the epidemiology of sleeping sickness due to the modification of the fauna composition, the nutritional behavior of tsetse, the zoophilic/anthropophilic index. To achieve the elimination goal in the sleeping sickness focus of Campo, we report in this paper the current epidemiological situation of the disease, the research findings of the last decades notably on the population genetics of trypanosomes, the modifications of nutritional behavior of tsetse, the prevalence of T. b. gambiense in humans, domestic and wild animals. An overview on the types of mutations occurring in the region has been raised and a discussion on the strategies that can be implemented to achieve the elimination of the disease has been made.

Highlights

  • Human African Trypanosomiasis (HAT), known as sleeping sickness, is an important public health disease in sub-Saharan Africa and is responsible for a considerable degree of suffering and mortality in countries where it is endemic

  • Among the 24 countries affected by Trypanosoma brucei gambiense (T. b. gambiense), seven (Angola, Democratic Republic of Congo, Sudan, Chad, Central African Republic, Congo, and Uganda) contribute 98% of all reported cases of the Gambian form of sleeping sickness [2]

  • We report the current epidemiological situation of HAT at Campo, the research findings obtained during the last decades, the socio-economic and environmental mutations occurring in this region

Read more

Summary

Introduction

Human African Trypanosomiasis (HAT), known as sleeping sickness, is an important public health disease in sub-Saharan Africa and is responsible for a considerable degree of suffering and mortality in countries where it is endemic. The considerable number of data generated during the last decades enabled us to understand the epidemiology of HAT notably the nutritional behavior of tsetse, the population genetics of trypanosomes, the animal reservoir of HAT and the disease transmission cycles From these data, control measures could be developed to achieve the elimination goal. Before the progressive switch from active to passive medical surveys as recommended by WHO in low prevalence settings, it is important to have a good cover rate during medical surveys organized by the mobile teams This is very important in a sleeping sickness focus subjected to deep mutations like the Campo focus where the number of inhabitants varies continuously with the socio-economic mutations (reopening of company, construction of autonomous port at “Kribi”) observed in this region. The use of this approach may enable us to achieve the elimination goal and to avoid the reemergence of the disease in a particular region

Conclusion
24. Van Hoof L
Findings
26. Mbida Mbida JA
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.