Abstract

It is important to develop the high power EUV light source up to 1 kW to realize the 3nm node, which is expected to be in production at 2023-24. To this end, an energy recovery linac (ERL)-based free electron laser (FEL) must be a most promising candidate, so that our group has done some feasibility studies from the view point of accelerator technology. In order to realize the EUV-FEL high power light source, it is also important to recognize the demand of end users and related problems on the FEL light source. Last year, we attended many conferences and workshops to learn these items and also we organized one day workshop “EUV-FEL Workshop” at Tokyo. You can find the presentation materials in a website of http://pfwww.kek.jp/PEARL/EUV-FEL_Workshop/presentaions.html. One of the most important requirements is to reduce the size of the EUV-FEL system. The total system size is about 200 m (L).x 20 m (W) at our current design of the EUV-FEL with 160m linac, where the acceleration energy and current are 800 MeV and 10 mA, respectively. However, we had comments from semiconductor industry that it is too long to install the light source in a usual LSI Fab, so that we have to find out solutions to reduce the length of the accelerator systems to ~100 m. To this end, there are following several challenges. 1) Increasing the field gradient of the superconducting RF (SRF) cavity to reduce the total length of the linac. 2) Higher Q to reduce the RF loss in higher field gradient SRF cavity. 3) Reduction of the acceleration energy by introducing shorter period undulator . 4) Double loop accelerator system, in which the electron passes through a same linac twice and accelerated up to twice energy or accelerating cavities are placed on both loop sides. The R&D directions of the above challenges on accelerator technologies will be presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.