Abstract
Hydrogen-powered fuel cells will play a vital role in the next generation of energy systems. In this regard, Proton Exchange Membrane Fuel Cells (PEMFC) represent a promising technical solution for all applications where direct electrification is not technically feasible or economically viable, such as the propulsion of heavy vehicles. However, robust production of high-quality fuel cell systems in scalable series production can only be achieved by an early assurance of the product quality considering the numerous variations on geometry element, part, and assembly level. This article presents the challenges and outlines the vision of a geometry assurance process capable of simulating the probabilistic assembly behavior of PEMFC stacks by multi-physics variation simulation, e.g., considering aspects of Finite Element Analysis and Computational Fluid Dynamics, under a realistic representation of the part manufacturing and assembly processes and their operation under variations. The findings reveal future research directions fostering the series production of robust, high-quality PEMFC stacks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.