Abstract

AbstractBACKGROUNDThe concept of carbon dioxide (CO2) conversion to formate has attracted increasing interest in recent years and various small‐scale studies are present in the literature. However, upscaling of electrochemical CO2 reduction comes with many challenges and there are very few reports available on it. In this study, we present a scalable three‐chamber reactor system for electrochemical CO2 reduction to formate, a precursor suitable for the production of fuels, pharmaceuticals and fertilizers and its extraction as pure formic acid by electrodialysis.RESULTSThe reactor produced 11.7 g L–1 formic acid in 6 h, i.e. 1.95 g L–1 h–1 at −1.8 V applied potential, 5 mol L–1 KOH as an electrolyte, GDE (gas diffusion electrode) cathode with SnO2 catalyst and Nafion™ 200 membrane. The maximum Faradaic efficiency achieved was 38%. In addition, recovery of the formate is equally important as its production for use as feedstock to form chemicals. We therefore also investigated the extraction of formic acid through conventional electrodialysis (CED) and bipolar membrane electrodialysis (BMED). The formic acid was extracted with 88% recovery using CED and 46% with BMED. Furthermore, BMED resulted in recovery of >95% K+ as base and 12 L pure CO2 for possible recycling to the electrochemical cell.CONCLUSIONWe consider this study to provide essential empirical evidence on factors influencing the scale‐up and subsequent performance of a liquid electrolyte‐based electrochemical CO2 reduction reaction (CO2RR) system to formate and its extraction at scale. However, optimized systems and operating strategies still need further investigation, and constituent materials, particularly in terms of membranes and cathode catalyst, need to be developed. © 2021 The Authors. Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.