Abstract

The exponential rise in the burden of chronic kidney disease (CKD) worldwide has put enormous pressure on the economy. Predictive modeling of CKD can ease this burden by predicting the future disease occurrence ahead of its onset. There are various regression methods for predictive modeling based on the distribution of the outcome variable. However, the accuracy of the predictive model depends on how well the model is developed by taking into account the goodness of fit, choice of covariates, handling of covariates measured on a continuous scale, handling of categorical covariates, and number of outcome events per predictor parameter or sample size. Optimal performance of a predictive model on an independent cohort is desired. However, there are several challenges in the predictive modeling of CKD. Disease-specific methodological challenges hinder the development of a predictive model that is cost-effective and universally applicable to predict CKD onset. In this review, we discuss the advantages and challenges of various regression models available for predictive modeling and highlight those best for future CKD prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.