Abstract
Abstract Polycystic ovary syndrome (PCOS) is one of the most com-mon female endocrinopathy and one of the leading causes of in-fertility. However, the exact etiopathogenetic mechanisms are not discovered yet, while therapeutic strategies in PCOS commonly rely on symptomatic rather than curative. Regarding reasonable ethical limitations in human population, animal experimental studies can provide better insights into mechanisms underlying etiopathogenesis of PCOS, as well as investigations of different therapeutic strategies. Rodent models for PCOS are very useful for experimental studies due to their great genetic similarities with human genome, short reproductive and life span, feasible gener-ating of genetically adapted animals, and convenient and acces-sible use. To our knowledge, androgens (dehydroepiandroste-rone, testosterone propionate, 5a-dihydrotestosterone), as well as estradiol valerate, represent the most frequently used hormones for PCOS modeling. Furthermore, the administration of antipro-gesterone or letrozole has been reported as effective for PCOS induction. In our review, the presented PCOS models were ac-complished by the administration of different hormones or drugs and alterations of environment. The main focus of this review was to summarize the alterations in ovarian morphology, hypotha-lamic-pituitary-ovarian axis, and hormone levels across above-mentioned protocols for postnatal PCOS modeling in rats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Serbian Journal of Experimental and Clinical Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.