Abstract

Objective To explore the role of isorhamnetin on polycystic ovary syndrome (PCOS) in rats. Methods Sprague Dawley (SD) rats were subcutaneously injected with dehydroepiandrosteron (DHEA) to establish PCOS model. Hematoxylin and eosin (H&E) staining and TdT-mediated dUTP Nick-End Labeling (TUNEL) were used to measure histological changes and apoptosis of ovary tissues. The levels of serum hormones and inflammatory factors in ovary tissues were measured by enzyme-linked immuno sorbent assay (ELISA). Results In DHEA-induced PCOS rats, the levels of serum glucose, insulin, testosterone and luteinizing hormone (LH) were enhanced, estradiol (E2), sex hormone-binding globulin (SHBG), follicle stimulating hormone (FSH) levels were decreased, inflammatory levels and apoptosis of ovary tissues were increased. Additionally, DHEA increased the body weight, ovary weight, and ovary volume, cystic follicles, and decreased corpus luteum. Moreover, the tumor necrosis factor (TNF) signaling pathway was activated in PCOS rats. The levels of TNF receptor superfamily member 1 A (TNFR1), TNF-α, and fas cell surface death feceptor (FAS) were enhanced in ovary tissues of DHEA induced PCOS rats. Isorhamnetin (ISO) treatment after DHEA modeling markedly reduced serum levels of glucose, insulin, testosterone and LH, increased E2, SHBG, FSH level, decreased inflammatory levels, and inhibited apoptosis and decreased body weight, ovary weight, and ovary volume. The levels of TNFR1, TNF-α, and FAS were markedly decreased after ISO treatment in PCOS rats. Additionally, ISO alone had no significant effect on rats. Conclusion Isorhamnetin inhibits inflammatory response to alleviate DHEA-induced PCOS in rats by inactivating the TNF signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call