Abstract

The variational two-electron reduced density matrix (v2RDM) method is generalized for the description of total angular momentum (J) and projection of total angular momentum (MJ) states in atomic systems described by nonrelativistic Hamiltonians, and it is shown that the approach exhibits serious deficiencies. Under ensemble N-representability constraints, v2RDM theory fails to retain the appropriate degeneracies among various J states for fixed spin (S) and orbital angular momentum (L), and for fixed L, S, and J, the manifold of MJ states is not necessarily degenerate. Moreover, a substantial energy error is observed for a system for which the two-electron reduced density matrix is exactly ensemble N-representable; in this case, the error stems from violations in pure-state N-representability conditions. Unfortunately, such violations do not appear to be good indicators of the reliability of energies from v2RDM theory in general. Several states are identified for which energy errors are near zero and yet pure-state conditions are clearly violated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.