Abstract

The continuous and systematic increase in transistor density and performance, as described in “Moore's Law” [1] and guided by CMOS scaling theory [2], has been remarkably successful for the development of silicon technology for the past 40 years. As the silicon industry moves into sub-ten nanometer dimensions, significant technology challenges in device performance, power dissipation, and variability will be imposed by the approach toward atomistic and quantum-mechanical physics boundaries. These issues are frequently cited as the reason Moore's Law is “broken”, or why CMOS scaling is coming to an end. However, the infusion of new materials, device structures, and the exploitation of 3D-silicon integration, coupled with innovations in circuit design and system architecture, will ensure several more generations of continued CMOS development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.