Abstract
Deep reinforcement learning (DRL) has numerous applications in the real world, thanks to its ability to achieve high performance in a range of environments with little manual oversight. Despite its great advantages, DRL is susceptible to adversarial attacks, which precludes its use in real-life critical systems and applications (e.g., smart grids, traffic controls, and autonomous vehicles) unless its vulnerabilities are addressed and mitigated. To address this problem, we provide a comprehensive survey that discusses emerging attacks on DRL-based systems and the potential countermeasures to defend against these attacks. We first review the fundamental background on DRL and present emerging adversarial attacks on machine learning techniques. We then investigate the vulnerabilities that an adversary can exploit to attack DRL along with state-of-the-art countermeasures to prevent such attacks. Finally, we highlight open issues and research challenges for developing solutions to deal with attacks on DRL-based intelligent systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.