Abstract
The possibility of an areal density over 50 Gbit/in2 was examined in near-field phase-change recording. The disk structure was optimized to maximize readout signals under the land-and-groove recording condition at a tracking pitch of 160 nm. We also evaluated the signal crosstalk from adjacent tracks. Eye diagrams of 50.4 Gbit/in2 areal density were demonstrated using 1.5 NA optics and a GaN laser diode. The track pitch and linear bit density are 160 nm and 80 nm/bit, respectively. The transmission electron microscope (TEM) micrograph of recorded amorphous marks at an areal density of 50.4 Gbit/in2 is also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.