Abstract

EaCHS1 functions in the tolerance of plantlets to salinity stress by maintaining ROS homeostasis. Chalcone synthase (CHS) is an essential enzyme in the biosynthesis of flavonoids. Expression of CHS is governed by a wide range of environmental stimuli, including UV light, pathogen attack, and circadian clocks. However, little research exists on the relationship between CHS and salinity stress. In this work, we constructed separate overexpression and RNA interference vectors of EaCHS1, and transferred them into tobacco. Overexpression of EaCHS1 increased the production of downstream flavonoids and the expressions of related genes in the phenylpropanoid pathway. It also improved resistance to salinity stress during seed germination and root development. In contrast, heterologous silencing of endogenous CHS in tobacco by a conserved EaCHS1 fragment had opposite effect. Together, our results indicated that changing the expression level of EaCHS1 in plants alters the accumulation of flavonoids and regulates plantlet tolerance to salinity stress by maintaining ROS homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call