Abstract

The proteins harboring really interesting new gene (RING) finger domains comprise a large family and play key roles in a variety of cellular processes. One among them is the tolerance to biotic and abiotic stresses in plants. In the present study, we characterize Vitis vinifera salt- and drought-induced RING finger 1 (VvSDIR1) a homologue of the Arabidopsis SDIR1 gene obtained from V. vinifera. The VvSDIR1 gene was identified using in silico approaches and encodes a membrane-localized protein. This was evident as expression of VvSDIR1 fused with green fluorescent protein was detected in cell membrane. Southern blot analysis indicates that VvSDIR1 is present in single copy number in grape genome. The expression of VvSDIR1 gene is elevated by multiple abiotic stresses like salt, drought, cold, and heat as well as upon exogenous application of methyl jasmonate, salicylic acid, methyl viologen, abscisic acid, and ethephon. In silico analysis shows that the VvSDIR1 cDNA is 831-bp long and codes for a 276-amino acid-long protein containing a characteristic RING finger domain in its C-terminal end. Overexpression of VvSDIR1 in tobacco leads to enhanced transcript levels of many genes, homologues of which are reported to be important in regulating many stress conditions. The heterologous expression of VvSDIR1 in tobacco was found to enhance the oxidative stress tolerance in tobacco. Tobacco lines transgenic for VvSDIR1 showed enhanced tolerance to treatment with methyl viologen, NaCl, and polyethylene glycol. To the best of our knowledge, this is the first report of the heterologous expression of VvSDIR1 in oxidative stress tolerance in transgenic tobacco.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call