Abstract

The advantages and applications of chalcogenide glass (ChG) thin film photoresists for grayscale lithography are demonstrated. It is shown that the ChG films can be used to make ultrathin (~600 nm), high-resolution grayscale patterns, which can find their application, for example, in IR optics. Unlike polymer photoresists, the IR transparent ChG patterns can be useful as such on the surface or can be used to transfer the etched pattern into silicon or other substrates. Even if the ChG is used as an etch mask for the silicon substrate, its greater hardness can achieve a greater etch selectivity than that obtained with organic photoresists. The suitability of ChG photoresists is demonstrated with inexpensive and reliable fabrication of ultrathin Fresnel lenses that are transparent in the visible as well as in the IR region. The optical functionality of the Fresnel lenses is confirmed. Application of silver photodissolution in grayscale lithography for microelectromechanical systems (MEMS) applications is also shown. A substrate to ChG/silver thickness etching ratio of ~10 is obtained for the transfer of patterns into silicon using reactive ion etching (RIE), more than a fivefold increase compared to traditional polymer photoresist.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.