Abstract

Defense sensing systems must be both productive and robust to accomplish their mission. Active infrared sensing devices consist of many components such as the active medium, mirrors, beam-splitters, modulators, gratings, detectors, etc. Each of these components is subject to damage by the laser beam itself or environmental factors. Misalignment of these components due to vibration and temperatures changes can also reduce performance. The result is a complex and expensive system subject to multiple points of degradation or complete failure. However, beam confinement or “no free-space optics” via fiber transmission and even component assembly within the fiber itself can achieve reliability and low cost for sensing systems with reduced component count and less susceptibility to misalignment. We present measurements of high-power infrared laser beam transmission in chalcogenide fibers. The fiber compositions were As39S61 for the core and As38.5S61:5 for the cladding, resulting in a numerical aperture of 0.2. A polyetherimide jacket provided structural support. Multiwatt CW transmission was demonstrated in near single-mode 12 micron core fiber. Efficient coupling of quantum cascade lasing into anti-reflection coated chalcogenide fiber was also demonstrated. Efficient beam transport without damage to the fiber required careful coupling only into core modes. Beams with M2 ≥ 1.4 and powers higher than 1 W produced damage at the fiber entrance face. This was most likely due to heating of the highly absorptive polymer jacket by power not coupled into core modes. We will discuss current power limitations of chalcogenide fiber and schemes for significantly increasing power handling capabilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.