Abstract

A systematic quantum mechanical study of σ-hole (chalcogen, pnicogen, and halogen) bonding in neutral experimentally known closo-heteroboranes is performed. Chalcogens and pnicogens are incorporated in the borane cage, whereas halogens are considered as exo-substituents of dicarbaboranes. The chalcogen and pnicogen atoms in the heteroborane cages have partial positive charge and thus more positive σ-holes. Consequently, these heteroboranes form very strong chalcogen and pnicogen bonds. Halogen atoms in dicarbaboranes also have a highly positive σ-hole, but only in the case of C-bonded halogen atoms. In such cases, the halogen bond of heteroboranes is also strong and comparable to halogen bonds in organic compounds with several electron-withdrawing groups being close to the halogen atom involved in the halogen bond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.