Abstract

Computably enumerable (c.e.) reals can be coded by Chaitin machines through their halting probabilities. Tuning Solovay's construction of a Chaitin universal machine for which ZFC (if arithmetically sound) cannot determine any single bit of the binary expansion of its halting probability, we show that every c.e.~random real is the halting probability of a universal Chaitin machine for which ZFC cannot determine more than its initial block of 1 bits—as soon as you get a 0, it is all over. Finally, a constructive version of Chaitin information-theoretic incompleteness theorem is proven.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.