Abstract

Computability theorists have extensively studied sets A the elements of which can be enumerated by Turing machines. These sets, also called computably enumerable sets, can be identified with their Godel codes. Although each Turing machine has a unique Godel code, different Turing machines can enumerate the same set. Thus, knowing a computably enumerable set means knowing one of its infinitely many Godel codes. In the approach to learning theory stemming from E.M. Gold’s seminal paper [9], an inductive inference learner for a computably enumerable set A is a system or a device, usually algorithmic, which when successively (one by one) fed data for A outputs a sequence of Godel codes (one by one) that at a certain point stabilize at codes correct for A. The convergence is called semantic or behaviorally correct, unless the same code for A is eventually output, in which case it is also called syntactic or explanatory. There are classes of sets that are semantically inferable, but not syntactically inferable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.