Abstract

Dietary inulin can affect the composition and metabolic activity of the gastrointestinal microbiota in piglets. To investigate whether the chain length of inulin may influence its stability in the gut and the bacterial community, 18 weaned piglets were housed 2 per cage, with 1 female and 1 castrated male animal each. The piglets received a control diet without or with 4% inulin, defined by an average degree of polymerisation (DP) of 31 (short-chain, I31) or 57 (long-chain, I57), with 6 piglets/diet. After a short feeding period of 6d, fructan concentrations, selected bacterial groups, lactic acid, short-chain fatty acid concentrations, and the pH were determined in the digesta of different segments of the gastrointestinal tract. The results indicated that differences in the microbial degradation of inulin were depending on the DP. Compared to the short-chain inulin, the concentrations of the long-chain inulin were numerically greater in the small intestine and caecum, and greater in the digesta of the ascending colon. Differences were also observed in the bacterial composition of the digesta, showing greater cell numbers of enterococci (P=0.029), bifidobacteria (P=0.029), and Lactobacillus mucosae (P=0.028) in the ileum in group I57 compared to group I31. However, most bacteria tended to be numerically reduced in the ileum in group I31 compared to both control and I57 groups. Minor effects were observed in the ascending colon: L. reuteri and L. amylovorus were decreased in group I57 compared to the control group (P=0.031 and 0.034, respectively), and L. mucosae was decreased in group I31 compared to the control animals (P=0.029). The concentrations of bacterial metabolites were distinctively changed in the large intestine of the piglets fed inulin. The pH was lower in the rectum contents in group I57 compared to the control piglets (P=0.026), but lactic acid and total short-chain fatty acid concentrations were not affected. The molar ratios of propionic acid increased in the caecal contents (P=0.040) and in both, the ascending and descending colonic digesta (P=0.017 and 0.013, respectively) in group I57 compared to the control group, while acetic acid decreased (P<0.001) and n-valeric acid increased (P<0.001 and P=0.011, respectively) in the digesta of the ascending and descending colon in group I57. In conclusion, the microbial degradation of inulin was dependent on its chain length. Long-chain inulin affected the microbial fermentation more pronounced compared to short-chain inulin. The effects were already observed after 6d, a relatively short application period, indicating that inulin may be used specifically during the sensitive post-weaning period for piglets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call