Abstract

The dynamics of poly(ethylene oxide) (PEO) intercalated in the subnanometer-spaced graphite oxide (GO) layers is investigated by using broadband dielectric spectroscopy (BDS). To this end, we compare BDS data obtained for PEO chains of increasing lengths, from three monomeric units to several thousand repetitive ethylene oxide units (n = 3–2135). Two relaxations were clearly identified for the confined PEO. The slowest one is proposed to originate from interfacial polarization. It is dependent on the chain length and exhibits a change in activation energy at 247 K, a temperature at which the GO exhibits an interlayer expansion when subjected to an increase in temperature. The fastest relaxation is nearly independent of the chain length, in contrast to the behavior that we found for the β-relaxation of bulk PEO. These results strengthen a previous hypothesis suggesting the emergence of a new set of chain length scales primarily dictated by the presence of anchoring points on the GO substrate upon intercala...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.