Abstract
We have investigated the ion transport and segmental dynamics in poly(ethylene oxide) (PEO) and sodium tetrafluoroborate (NaBF4) salt based solid polymer electrolytes as a function of molecular weight of PEO polymer matrix at a fixed salt concentration (EO/Na = 18) using broadband dielectric spectroscopy. The molecular weight (Mv) of PEO polymer matrix was varied from 1 × 105 to 6 × 105 g/mol. The ionic conductivity of the PEO based electrolytes obtained from the complex impedance plot showed a correlation with the glass transition temperature, crystallinity and ion diffusion coefficient. The AC conductivity spectra were analyzed by using the universal power law model, except the low frequency region, where the electrode polarization contribution was dominant. The temperature dependence of ionic conductivity and the hopping frequency followed the Vogel-Tammann-Fulcher (VTF) relation, indicating a coupling between the ion transport and the segmental dynamics of polymer chains. The segmental dynamics was investigated using the derivative dielectric constant spectra. The modulus spectra were well described by the Havriliak-Nigami and the Kohlrausch-Williams-Watts functions. The temperature dependence of the conductivity relaxation time also followed the VTF relation. The ion transport in PEO based polymer electrolytes with higher molecular weight was found more cooperative than that of the other polymer electrolytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.