Abstract
A multi-gas sensing system was developed based on the detection principle of the non-dispersive infrared (NDIR) method, which used a broad-spectra light source, a tunable Fabry-Pérot (FP) filter detector, and a flexible low-loss infrared waveguide as an absorption cell. CH4, C2H6, and CO2 gases were detected by the system. The concentration of CO2 could be detected directly, and the concentrations of CH4 and C2H6 were detected using a PCA-BP neural network algorithm because of the interference of CH4 and C2H6. The detection limits were achieved to be 2.59 ppm, 926 ppb, and 114 ppb for CH4, C2H6, and CO2 with an averaging time of 429 s, 462 s, and 297 s, respectively. The root mean square error of prediction (RMSEP) of CH4 and C2H6 were 10.97 ppm and 2.00 ppm, respectively. The proposed system and method take full advantage of the multi-component gas measurement capability of the mid-infrared broadband source and achieve a compromise between performance and system cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.