Abstract
Tetragonal CH3NH3PbI3 perovskite thin films with large crystallite sizes were successfully fabricated under atmospheric air using a one-step hot-casting technique. The casting temperature governed structural and optical properties of the prepared films. The energy gaps of the hot-casted films changed with changing casting temperature due to the variation of Urbach energy. The hot-casted perovskite thin films had superior structural stability to that of the two-step method films. However, the hot-casted perovskite films contained trap states as suggested by additional emissions other than bimolecular recombination in photoluminescence spectra. The origins of these trap states were believed to be attributed to the presence of iodine vacancies (VI), iodine interstitial sites (Ii) and methylammonium ion vacancies (VMA) in the prepared films. The fabricated perovskite solar cells showed that at low casting temperatures the power conversion efficiencies were relatively higher than the higher ones, this was attributed to their lower non-radiative recombination activities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.