Abstract

Abstract A numerical simulation was performed to study the hydrodynamics of micro-bubble swarm in bubble column with polyacrylamide (PAM) aqueous solution by using computational fluid dynamics coupled with population balance models (CFD-PBM). By considering rheological characteristics of fluid, this approach was able to accurately predict the features of bubble swarm, and validated by comparing with the experimental results. The gas holdup, turbulent kinetic energy and liquid velocity of bubble column have been elucidated by considering the influences of superficial gas velocity and gas distributor size respectively. The results show that with the rise of the superficial gas velocity, the gas holdup and its peak width increase significantly. Especially, the curve peak corresponding to high gas velocity tends to drift obviously toward the right side. Except for the occurrence of a smooth holdup peak at the column center under the condition of the moderate distributor size, the gas holdups for the small and large distributor sizes become flat in the radial direction respectively. The distribution of turbulent kinetic energy presents an increasingly asymmetrical feature in the radial direction and also its variation amplitude enhances obviously with the rise of gas velocity. The increase in gas distributor size can enhance markedly turbulent kinetic energy as well as its overall influenced width. At the low and moderate superficial gas velocity, the curves of the liquid velocity in radial direction present the Gaussian distributions, whereas the perfect distribution always is broken in the symmetry for high gas velocity. Both liquid velocities around the bubble column center and the ones near both column walls go up consistently with the gas distributor size, especially near the walls at the large distributor size condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.