Abstract

The effect of liquid and gas velocities, solid concentrations, and operating pressure has been studied experimentally in a 15 cm diameter air-water-glass beads bubble column. The superficial gas and liquid velocities varied from 1.0 to 40.00 cm/s and 0 to 16.04 cm/s, respectively, while the solid loading varied from 1 to 9%. The gas holdup in the column was reduced sharply as we switched from batch to co-current mode of operation. At low gas velocity, the effect of liquid velocity was insignificant; while at high gas velocity, increasing liquid velocity decreased the gas holdup. Drift flux approach was applied to quantify the combined effect of liquid and gas velocities over gas holdup. For co-current three phase flows, the gas holdup decreased with increase in solid loading for all pressures. But for batch operations, when solid loading was 5% or more, settling started leading to higher gas holdup. Increasing pressure from atmospheric conditions increased the gas holdup significantly, flattening asymptotically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call