Abstract
The adsorption technology is becoming the more expected solution by today’s researchers for fix the energy and environmental issues. The main part of the cooling system adsorption is adsorbent and adsorbate. One of the most widely used adsorbents in research of adsorption technology is silica gel. A new silica gel-water adsorption chiller design was developed that composed of two sorption chambers with compact fin tube heat exchangers as adsorber, condenser, and evaporator. Energy, mass, and momentum conservation equations of the adsorption systems have been used for the CFD two and three dimensional models. The geometry of simulation is simply made within silica gel layer between two fins. The simulation is also implemented using a finite volume method through the CFD software Fluent. User defined functions are given to modify the energy, mass, and momentum conservation equations. The simulation of adsorption process is adjusted at unsteady condition. Adsorption and desorption processes are simulated with room temperature for cooling water inlet at temperature 305.15 °K, hot water inlet at temperature 353.15 °K, mass flow rate cooling water inlet at 0.3 kg/s and pressure 32 KPa. For the whole adsorbent bed area, the result shows that the highest absolute adsorption rate at the outer surface, while the lowest rate is at the center. After adsorption was finished, the condition is reversed. The highest absolute adsorption rate is achieved at center, while the lowest rate is achieved at the outer surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.