Abstract

Heat pipes are important in many industrial applications improving the thermal performance of heat exchangers and increasing energy savings. Computational Fluid Dynamics (CFD) were used to simulate the steam/water two-phase flow and heat transfer processes of a heat-pipe. The novelty of the study is that the evaporation, condensation and phase change processes were modelled using a homogeneous multiphase model and implemented source terms inspired by the Lee phase change model. The 3D CFD simulations could reproduce the heat and mass transfer processes in comparison with experiments from the literature. Reasonable good agreement was not only observed between CFD temperature profiles in relation with experimental data but also in comparing the thermal performance of the heat-pipe. It was found that the heating power should not increase above 1000 W for the analyzed type of heat pipe design using copper material. In future, the use of the improved advanced numerical models is planned.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.