Abstract

Cases of dam failures are seen almost every year globally, and the propagation of rapidly varying unsteady flows resulting from those dam failures has significant environmental and economic consequences. A three-dimensional Computational Fluid Dynamics model was created to solve unsteady Reynolds-Averaged equations to investigate the generation and propagation of dam-break flows and reflected flood waves in the presence of a trapezoidal bottom obstacle. The dam-breaks were modelled using OpenFOAM based on the Volume of Fluid method employing the Finite Volume Method, and the performance of various Reynolds-Averaged Navier-Stokes turbulence models, including the realizable k − ε, SST k − ω (Shear Stress Transport k − ω), and v2 − f models, has been evaluated. To assess the capabilities of the different turbulence models, quantitative comparisons of numerical simulations with laboratory experiments were completed, and it was found that the SST k − ω model performed better in predicting the free surface profiles and negative bore propagation speeds than the realizable k − ε and v2 − f models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call